Systems eComputerseControls, Vol. 3, No. 3, 1972

Translated from Denshi Tsushin Gakkai Ronbunshi, Vol. 55-D, No. 8, June 1972, pp. 355-362

On the B-Ternary Logical Function—A Ternary

Logic Considering Ambiguity

Masao Mukaidono, Member

Faculty of Engineering, Meiji University, Kawasaki, Japan 214

SUMMARY

Binaritic-ternary logic (abbreviated B-ternary
logic) is a ternary logic which is an extension of
the conventional binary logic to include considera-
tion of uncertainty. It has already been applied
in various ways in engineering, and theoretical
studies of it have been made in several different
forms. The present paper gives the development
of a new theoretical scheme which includes all
these theories and unifies them. A partial order-
ing is newly defined on the set of truth values,
and it is proved that a necessary and sufficient
condition for a ternary logical function to be B-
ternary.is that it be monotonic with respect to
this partial ordering. A canonical form of a B-
ternary logical function is formulated. It is
briefly pointed out that B-ternary logic is closely
related to propositional logic with continuum
hypothesis, fuzzy logic, and fail-safe logic.

1. Introduction

In the conventional binary logic we assume
that every proposition is either true or false and
that the truth values 1 and 0 are used respectively
to represent true and false. As an extension of
the classical logic we can consider a logic where
ambiguity is admitted besides the true and false
and where the truth values 1, 0 and 1/2 are used
respectively to represent true, false, and uncer-
tainty. Such a logic is described as binaritic-
ternary or simply B-ternary.

The mathematical form of a B-ternary logic
was introduced a number of years ago [1], and is
one of the earliest forms of ternary logic. The
mathematical system representing B-ternary
logic is called a semi~Boolean algebra or a
DeMorgan lattice [2]. This mathematical system,
however, was not much studied and almost no
mathematical developments were made to
strengthen its application in practical fields.
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The reason for this may lie in that the mathemati-
cal system is not functionally complete, that is,
not all ternary logical functions can be repre-
sented by this system.

In the engineering field, however, some forms
of B-ternary logic have been used to describe
time-delay action or uncertain behavior occurring
in a relay network [3, 4], since such phenomena
cannot be described in binary logic. Similarly,
some forms of B-ternary logic have been used
more recently to study the hazards of combina~
tional networks [5, 6] and those of sequential net-
works [7], and the truth value 1/2 corresponds
to a fransient state in those studies. Recently
many researches have been made on fail-safe
logic [8-12], and they can be unified inip.a form
of ternary logic. However, those researches
are within the category of B-ternary logic, since
they use an additional truth value to represent an
uncertain failure state.* For example, Hirayama,
Watanabe and Urano [9] studied ¢-type fail-safe
logic, Takaoka [12] studied N-fail-safe logic,
and Tsuchiya [11] and the present author {10}
studied C-type fail-safe logic.

The present paper is concerned with a develop-
ment of a new theoretical scheme which will in-
clude those different forms of B-ternary logic
and thus unify them. This new theoretical scheme
is a most natural extension of binary logic, and
hence it has an advantage in that we can look back
to binary logic from a higher standpoint.

*Instead of the truth value 1/2, Tsuchiya used
the symbol U (for Undefined), Urano used the
symbol ¢ standing for the union of {0} and {1},
and Takaoka used the symbol N (for Null).
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Fig. 1. Relation >.

2. B-ternary Logic and B-ternary Logical
Function

Let V2 and Vg3 be respectively the sets of truth
values 0 and 1 and 0, 1/2 and 1. Suppose that
V3 is linearly ordered by the relation = as in
Fig. 1. Define the binary operations - and v
{AND and OR) and also the unitary operation
~ (NOT) on V3 as follows:

For any X, Yev,,

X Y=mi(X, V) (1)
XV Y=max(X, ) (2)
~X=1-X (3)

Then, the truth tables of these operations are
as shown in Tables 1, 2 and 3.

Definition 1. The system<V,, -, V, ~> is the
B-ternary logic.

If we restrict the three operations to the sub-
set V2, then B-ternary logic becomes binary
logic and is a Boolean algebra.

The B-ternary logic satisfies most of the laws
defining Boolean algebra. However, it does not
satisfy the following law for Boolean algebra:

(*) Complementary law:

~z\Vzr=1

~zT+x=(0

This is the reason why B-ternary logic is not a
Boolean algebra.

We list below the laws which hold in B-ternary
logic, as is well known:

Letz, y. ze V,; then
(1) Commutative laws:
Vy=yVz, zoy=y-z

(2) Associative laws:
2V Vay=(zVy)Vs=
Ty =(x-y)+z
(3) Absorption laws:

zV(z-y) =z,
(zVy)-z=zx

Table 1. x-y

= 0 | 1

0 0 0 l 0

12 0 12 2

1| 0 Y k 1
Table 2. zvy

X| 0 ‘ 12 1

Y ,

o | 0 1z 1

2 12 12 1

1 1 1 1
Table 3. ~Xx

I R

~z | 1 T )

(4) Distributive laws:

Z(yVay=(z-3)V(z2)
V() =(z\V3)(zV2)
(5) Negation law:

~(~z)=1I

(6) DeMorgan's laws:*

~(zoy)=~z\ ~y
~(zVy)=~z-~y

(7) Existence of maximum element and mini-
mum element:

There are elements 1 and 0 such that
Tel=z, 1:0=0

zVi=1, zVV0=x

From laws (1), (2) and (3) above, we obtain also

(8) Idempotent laws:

zez=z, x\/z=x

Laws (1) through (3) are the axioms for lat~
tice, and laws (1) through (4) are the axioms for
distributive lattice. A distributive lattice which
has a maximum element and a2 minimum element
and satisfies laws (5) and (6) concerning the

*To save the use of parentheses we assume
that operations are applied in the order of ~,
«and v.

28




negation operation ~ is called a DeMorgan lat-
tice or a semi-Boolean algebra.

The B-ternary logic defined by Definition 1
is a mathematical system which has meaningful
models. Namely, it represents a logic that
admits an ambiguous or uncertain state if we
assign the truth values 1, 0 and 1/2 respectively
to true, false, and uncertainty.

A mapping F:V,"~V, is called a ternary logi-
cal function of n variables. Here, V32 is the
n-dimensional vector space counstructed by taiing
the Cartesian product of n copies of V3. A fixed
point of V3l will be denoted by

a=(d,, =+, @i, -, o), &€V,
and a variable which ranges over V32 will be
denoted by

T=(Zy, v, Tiy ey Tady Ti€ V),

An expression obtained by applying the opera-
tions, -, V, ~ to the variables x;{i=1,---,n)
and the constants 0 and 1 is a ternary logical
function of n variables. We define the technical
terminology as follows:

Definition 2. (1) The constants 0 and 1 and
the variables x1,--.,Xp are expressions.

(2) If vu and v: are expressions, then v.-v.
vVvyaand ~y, are expressions.

(3) Ouly those elements just defined in (1)
and (2) are expressiouns.

An expression defined by Definition 2 repre-
sents a ternary logical function of n variables
when the variables x1,.--,x{, -- -, X range over
V3. Inthe present paper we shall be concerned
only with a logical function of n variables unless
otherwise stated. '

Definition 3. A ternary logical function rep-
resented by an expression as defined above is
called a B-ternary logical function.

We define a partial ordering > on the set Vg
as follows:

Definition 4. 1230, 1/2>=1, a>a, acV, .

Figure 2 shows the partial ordering>. Since
0 and 1 represent definite states and 1/2 repre-
sents an ambiguous state where it is uncertain
whether it is 0 or 1, the partial ordering > is a
partial ordering that reasonably describes an
ambiguity.

Let us extend the partial ordering to the

domain V3 of ternary logical functions as
follows:
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Fig. 2. Relation>.

Definition 5. Let a={a, -, a.), b=(b, =, b3 e V",

We then write
a>b

if and only if e >% for every i. Ifa>3, we say
that a contains & or that 4 is contained in a.

It is clear that the relation > defined on Vg2
is a partial ordering. The element (1/2,...,1/2)
is a maximal element, and it is the maximum
element. There are 2B minimal elements, and
they are the elements of Vaoni.

Definition 6. Let aeV,". We define a* to be
the set of minimal elements that are contained
ina, that is,

a*={a’e V,"a > a’}

The set «* is obtained by collecting the ele~
ments each of which has resulted from the
replacement of every component of a having the
value 1/2 by either 0 or L. Thus, e* is the set of
elements such that if all the ambiguities involved
ine are replaced by definite information, thea
a becomes one of the elements of a*. Namely,
a*is the set of all possible elements for « when
all the ambiguities involved in « are cleared.
Therefore, it can be seen again that the partial
ordering >~describes ambiguity well. It is also
clear that «>5 if and only if a*2é*. Namely, the
relation of partial ordering between two elements
a,and b is concordant with the inclusion relation
between the two sets a+and &*.

We now consider some properties of B-ternary
logical functions.

Theorem 1. Let F be a B-ternary logical
function. Then, we have the following:

(1) K aeV,, then Fla)eV,.

(2) If a>-», then F(a)> F(b).

Proof. By the definition of a B-ternary logi-
cal function, part (1) here clearly holds. We

therefore proceed to prove part (2). °

It is clear that 0, 1 and xj all satisfy the
property (2).

Suppose that the B-ternary logical function F
satisfies property (2). Then, by Definition 4 of

S |




partial ordering >, F(a) > F(b) implies ~F(a) > ~F(b)
Therefore, ~F also satisfies property (2).

Suppose that two B-ternary logical functions
G and H satisfy property (2) but G-H does not.
That is, suppose that if a>5, then(G-H)(a) 3 (G-H)
(8). This supposition implies that

(i) (G-H)(@)=0and (G-H)(5) %0
or
(ii) (G-H(a)=1and (G-H)(b) %1.

We shall show that neither of these holds. If
(G-HY(a)=0, then either G(a)=0 orH(a)=0. Since G
and H satisfy property (2), we haveG(»)=0 or
H(by=0. Thus (G-H)(b)=0. Therefore, (i) does not
hold. Similarly (ii) does not hold. Therefore
G- H satisfies property (2).

We now write

GYH=~(~G-~H)

Therefore, if G and H satisfy property (2), then
GV H satisfies the same property, since the prop-
erty is preserved under the operations ~ and -.

Therefore it is proved that every B-ternary
logical function satisfies property-(2). (Q.E.D.)

Theorem 1 indicates that if the input to a B-
ternary logical function contains no ambiguities,
then the output contains no ambiguities and that
the more ambiguities contained in the input, the
more ambiguitfies are contained in the correspond-
ing output.

Let F be a ternary logical function. We then
denote by

F-y), F-i(1j2y, F-Y(Q)

respectively the set of elements of V3o which
are mapped into 1 under F, the set of elements
of V3 which are mapped into 1/2 under F, and
the set of elements of V3B which are mapped into
0 under ¥. These sets are called respectively
the 1-set, the 1/2-set and the 0-set.

Corollary 1. (1) If aeF-'(1/2), then beF-(1/2)
for every » such thats>a.

(2) HaeF (1), then seF-(1) for every b such
that e »b.

(3) HacF-(0), then veF-(0) for every b such
thata>b.

Proof. This corollary readily follows from
the fact that the B-ternary logical function F
satisfies part (2) of Theorem 1. (QR.E.D.)

Corollary 2. If F is a B-ternary logical func-
tion, we have:
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(1) Fay=12& Fan={0.1}
(2)

(3

Flay=1= F(e*)={1}

=0= )= -
F(a)=0= F{e*)={0} /whm{ o
Fary= | A |

:{}é A¥A

-~

The proof is omitted.

Corollary 3.
tion, then

If ¥ is a B-ternary logical func-

~F{a) g F(a*}

for every e of Vgni.
The proof is omitted.

Corollary 4. If F is a B-ternary logical func-
tion, then

(F(a))*DF{a*}
for every a of Val.
The proof is omitted.

If we identify the sets {0}. {1} and (0.1} with the
truth values 0, 1 and 1/2 respectively, then
Corollary 4 can be written

F(a) > F(a*)

A proposition which is essentially the same as
Corollary 3 was already established in [6].
Corollaries 1, 2, 3 and 4 are only necessary i
conditions for a ternary logical function to be a %
B-ternary logical function. However, it will be i
shown in the next section that Theorem 1 is a

necessary and sufficient condition for the exist-

ence of a B-ternary logical function.

3. Canonical Form of B-Ternary Logical
Function

Two distinct expressions v and ¥. may repre-
sent the same B-ternary logical function. We
shall therefore discuss the canonical form of a
B-ternary logical function.

Since the distributive laws and idempotent laws
hold in B-ternary logic, a B-ternary logical
function can be expanded into addition form. *
However, the complementary laws do not hold in
B-ternary logic, and hence this expansion in
addition form may contain some terms which con-
tain some variables and their negations simul-
taneously as factors. To distinguish such terms
from the others, we make the following defini~
tions:

*Expansion into addition form is also called
expansion into product-sum form.




Definition 7. A letter is defined to be a vari-
able or the negation of a variable. A term is
defined to be the product (AND) of some letters
in which no letters occur more than once. A
term is called a simple term if it contains no
pair of a variable and its negation. A term
which is not a simple term is called a comple-
mentary term.

Definition 8. The sum (OR) of some terms in
which no terms occur more than once is called
2 B-terpary additive canonical form. The part
of a B-ternary additive canonical form that is
the sum of simple terms is called the additive
canonical form of the B-ternary additive canoni-
cal form, and the part that is the sum of comple-
mentary terms is called the complementary
additive canonical form of the B-ternary additive
canonical form.

For any given expression there exists a B-
ternary additive canonical form which represents
the B-ternary logical function represented by the
given expression. However, for a given B-ter-
nary logical function there may exist two or more
B-ternary additive canonical forms all of which
represent the given B-ternary logical function.

Lemma 1. zi~~zi=zi-~zi~(z;V~z;)

=z~ i T\ T~ Ti X
Proof Zi-~z;=min(z;, 1—z;) <12
z;V ~z;=max(z, 1—z)=12
L T~z (2 ~x;) =min(xie~zi, £V ~Z;)
= rjem; (Q.E.D.)

By Lemma 1 we can express a complementary
term by the sum<(v) of some complementary
terms each of which contains all variables as its
factors. This is similar to the fact that in binary
logic an arbitrary term can be expressed by the
sum of terms each of which contains all the vari-
ables as its factors (that is, the sum of minimum
terms). However, such an expression of a sim-
ple term is not always possible.

Definition 9. A complementary term which
contains all the variables as its factors is called
a complementary minimum term.

Definition 10. Let ¢ and g be terms such that
every letter contained in o is contained in 8.
Then, by the absorption law we have

e\ 8=a

that is, the term 8 is omitted. Such an omission
of a term is called a trivial omission.

We now discuss the procedure to find a canoni-
cal form which uniquely corresponds to a given
B-ternary logical function. Such a canonical
form is called the principal B-ternary additive
canonical form of the given B-ternary logical
function.
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Procedure. For a given B-ternary logical
function, we find a B-ternary additive canonical
form of the given B-ternary logical function. We
expand every compiementary term contained in
the B-ternary additive canonical form into the
sum of complementary minimum terms, and
apply trivial omissicn of 2 term wherever it
applies. Thus we obtain the principal B-ternary
additive canonical form.

Example 1.

It is clear that the principal B-ternary addi-
tive canonical form of a B-ternary logical function
is equivalent to the given expression of the B-
ternary logical function. We prove in the follow-
ing that the principal B-ternary additive canonical
form is uniquely determined by the given B-ter-
nary logical function.

We begin with investigation of some properties
of simple terms and those of complementary
terms.

asy eV,

Definition 11. Leta={a, - The simple
term corresponding to «, denoted by <,, is defined
to be the expression,

PPN
where

Ii%=~z; if a;=0

=5 if a=1

zo=11f a;=1/2

It is clear that the above definition gives a
one-to-one correspondence between the set V3l
and the set of simple terms.

Definition 12. Leta=(a, -, a}eV,"-V,*. The

complementary minimum term corresponding to
a, denoted 4., is defined to be the expression,

where

riti=~z; if a;=0

o= if a;=1

zitt=zie~ziif a;=1/2

It is clear that the above definition gives a
one-to-one correspondence between the setv,~-v.,”.

and the set of complementary minimum terms.

Lemma 2. Leét <, be the simple term corre-
sponding toae¢V,". Then,




c.(B)y=1e=a>b
e a(b*y={1}

@)

2 (0 =1/2Fc(ad>c, b, Kﬁ‘j,u
& e (b*)=1{0, 1}

(i)

(iii) () =0 ~Te(a>c, b>¢)

© . (b*y=1{0}.
The proof is omitted.
Let F be an additive canonical

Corollary 5.
form. Then,

F(ay=0& F(a*)={0}
The proof is omitted.

Lemma 3. Let 4 be the complementary
minimurn term corresponding to a¢V,"-V,*. Then,
(i) s.(B)=12&b>a
(ii) 2.(B)=0>b>-a

(iil) vbeV,", 2,0 =1{0}

The proof is omitted.

If F is a B-ternary logical function, then the
1-set, 1/2-set and 0-set of F are partially ordered
sets with respect to the ordering > and they have
the properties stated in Corollary 1. Thus, if we
define ¢ F-'(1), @ F-*(0) and 8 F-*(1/2) to be the set of
maximal elements (with respect to the partial
ordering »>) in F-'(1) the set of maximal ele-
ments in F'(® and the set of minimal elements
in F-/2, then they are all uniquely deter-
mined by the given B-ternary logical function F.
It can easily be seen from Corollary 1 that if the
sets & F-'(1),9 F-*(0), and 4 F-'(1/2) are given, then F
is uniquely determined. By part (i) of Lemma 2
it is true that if we construct an expression by
taking the sum (OR) of the simple terms corre-
sponding to the elements of s F~'(1), then the l-set
of this expansion is equal toF-(1). Similarly, by
Lemma 3, the expression constructed by taking
the sum (OR) of the complementary minimum
terms corresponding to the elements of 3 71/
has the 1/2-set equal to F-'(1/2), Here, it is clear
from part (ii) of Lemma 2 that some subset of
F-'(1/2) is also represented by some simple terms,
and hence some complementary minimum terms
that correspond to some elements of 3 F-*(1/2) are
omitted and the sum of the remaining comple-

mentary minimum terms is uniquely determined. ¥

Therefore, the B-ternary logical function

*By Lemma 2(ii), a necessary and sufficient
condition for the complementary minimum term
# corresponding to the element s of a7~ w2 to be
omitted due to the existence of the simple term
«. corresponding to the element « of s /) is that
there exists ¢ v, such that «>. and s> (since it
is clear that «»&). This condition is equivalent
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represented by the sum of the above two expres-
sions has the same 1-set and 1/2-set as F and
hence also the same 0-set as F. Therefore, the
sum of the two expression is equivalent to ¥ and
is uniquely determined.

The aforementioned procedure to find the prin-
cipal B-ternary additive canonical form indeed
yields the unique expression mentioned in the last
paragraph. In that procedure, the trivial omis-
sions of terms in the additive canonical form and
those in the complementary additive canonical
form give the simple terms corresponding to the
elements of ¢ /(1) and the complementary mini-
mum terms corresponding to the elements of
8 F1(1/2), and the trivial omissions of terms occur-
ring between the additive canonical form and the
complementary additive canonical form eliminate
those complementary minimum terms whose
corresponding elements of 4 F-'(1/2) are also repre-
sented by some simple terms.

We have just proved the following theorem:

Theorem 2. For an arbitrary B-ternary logi-
cal function, there exists a unique principal B-
ternary additive canonical form.

Theorem 3. A ternary logical function F is a
B-ternary logical function if F satisfies the fol-
lowing two conditions:

(1) IfaeV.", then Fla)eV,,
(2) Ife>b, then F(a)> F(b).

Proof. If a térnary logical function F satisfies
condition (2), then the 1-set, 1/2-set and 0-set
of F satisfy the properties stated in Corollary 1.
If F satisfies condition (1), then no elements of
Von are contained ina 7-'(1/2). Thus, the simple
terms corresponding to the elements of & F-'(1),
and the complementary minimum terms correspond-
ing to the elements of aF-'(1/2) can be defined, and
hence we can construct a principal B-ternary
additive canonical form which is equivalent to F.
Therefore F is a2 B-ternary logical function.

(Q.E.D.)

Theorems 1 and 3 show that the two conditions
(1) and (2) stated in Theorem 3 form a necessary
and sufficient condition for a ternary logical
function to be a B-ternary logical function.

to every letter in «, being also ins . The sum
(OR) of the remaining complementary minimum
terms stated in the main text is obtained by taking
the sum of only those complementary minimum
terms 5 corresponding to the elements of s ram
which satisfy the condition sen-wm.



4. C-type Logical Functions and P-type Logical
Functions

We begin with definition of a certain relation
between two B-iernary logical functions F and G.

Definition 13. Two B-ternary logical functions
F and G are said to be Vo-eguivalent if and only
i

YaeV,*, Fla)=CG(a)

The Va2-equivalence is an equivalence reiation
defined on the set of B-ternary logical functions.
We denote by Veq(F) the set of B-ternary logical
functions which are Vo-equivalent to F. There
exists a one-{o-one correspondence between the
set of all Veq(F) and the set of all binary logical
functions of n variables. Thus, the set of the
sets Vaeq(F) with the operations, -, v and ~ form
a Boolean algebra which is isomorphic to the
Boolean algebra formed of the set of binary logi-
cal functions with the same operations [10].

Let a¢V," be an input of a B-ternary logical
function ¥. By Corollary 2, if F(a*), the set of
possible values of F when the ambiguities con-
tained ina are replaced by definite information,
is {0. 1} then F(ayis 1/2, that is, we cannot deter-
mine whether Fa) is 0 or 1. However, the con-
verse is not true, that is, F(a)=U2 does not imply
that F(a*)={0,1}. In other words, we may have a
case where Fla)=1/2 and F(a®)={0} or a case where
F(ay=12and F(a*)= {1} . Recalling that o= is the
set of vectors obtained by replacing each com~
ponent of « equal to 1/2 by either 0 or 1, the last
statement means that some information is lost.

Definition 14. For a given B-ternary logical
function F we define the information loss set of
F by

{ae V\*-V,"F(a)=1/2, F(a*)5={0, 1}}

If the information loss set of a B-ternary logi-
cal function F is empty, then for such an F the
implications (1), (2) and (3) of Corollary 2 become
two-way implications.

Definition 15. A ternary logical function F is
called a P-type logical function* if it satisfies
the following three conditions:

(1) Flay=12e& Fla*)={0, 1},

(i) Fay=1e Fan=1,

(iil) F(a)=0% F(a*)={0}

*The term P-type logical function is assigned
because a P-type logical function can be expanded
into an expression that is known as a prime-
implicant expansion in binary logic.
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An opposite type to a P-type logical function
has a maximum information loss set. It isater-
nary logical function whose value is 1/2 for all
inputs other than those belonging to Vol

Definition 16. A ternary logical funciion F is
called a C-type logical function* if is satisfies
the following two conditions:

(iy IfaeVy”, then FlayeV,

(ii) Kaev,"-V,", then Flai=12

Theorem 4. The P-type logical functions and
the C-type logical functions are B-ternary logi-
cal functidns.

Proof. By definition the P-type logical func-
tions and C-type logical functions satisfy condi-
tions (1) and (2) of Theorem 3. Therefore, they
are B-ternary logical functions. (Q.E.D.)

It is clear from the definition that every P-type
logical function and every C-type logical function
is uniquely determined by its values for the ele-
ments of VoO. Thus, for a given B-ternary logi-
cal function ¥, a P-type logical function Fp and a
C-type logical function Fe which are V2-equivalent
to F are uniquely determined. The logical func-
tion Fp has the smallest information-loss set and
Fe has the largest information-loss set among the
B-ternary logical functions belonging to Veg(F).
There are only two B-ternary logical functions F
whose Veq(F) is a set consisting of one element,
that is, the Fp Va2-equivalent to F is equal to the
Fc Vi-equivalent to F. These are

(oo {Ty T2 I1) B2 ) T2 Tumi) = T
((oolTy T} 22 0) 0 ) DT

where n=a=~z-~nva-n and 2, & ni=~a-nvze~n, These
two B-ternary logical functions and C-type logi-
cal functions are discussed in detail in [10].
Thus, we shall mainly discuss P-type logical
functions here.

Let us determine, for a given B-ternary logi-
cal function F, the P-type logical function that is
Vo-equivalent to F. It is clear from Lemma 2(i)
that the set

{ae ViMarcF (L}

consists of those vectors whose corresponding
terms are such that when they are looked upon as
binary logical functions, their l1-sets are con-
tained in the l-set of F. If we denote by @ F,~'(1)
the set of all maximal elements in the above set

*The C-type logical functions are used in fail-
safe logic [10]. They are called C-type because
they are usually expanded in the principal additive
canonical form for realization by some type of
hardware.




4

of vectors with respect to the partial ordering >,
then we have the following theorem:

Theorem 5. Let Fp be the logical function
which is represented by the sum (OR) of the
terms corresponding to the elements of 5 F,~(1).
Then, Fp is the P-type logical function which is
Vo-equivalent to F.

Proof. First, we shall prove that Fp is V2-
equivalent to F. Suppose that F(a)=1for some
Then, there exists some element ¢’ of
s F,m(1(and hence o’ is an element of V3o) such
that ¢’ >« and the term <. corresponding to ¢ is
contained in Fp. Since =.(a)=1, we have Fya)=1,
and hence F,(ay=1. Conversely, if F,(a)=1, then
there exists a term =« in Fp such that the ele-
ment ¢’ corresponding to =.- has the property that
a’is an element of V3l anda’>a. ThusaeF-(1).
Therefore, if we look upon F and Fp as binary
logical functions, then they have the same 1-set.
Since both F and Fp do not take the value 1/2 for
any element of Von, F and Fp also have the same
0-set. Therefore, ¥ and Fp are V2-equivalent.

ae V"

We shall now prove that Fp is a2 P-type logical
function. Since Fp is represented by the additive
canonical form, we have by Lemma 5

F(a*)= (0} & F(a)=0

for alle. N F,(a9)={1}, then Fp contains the term
that corresponds to some element o’ such that
a’>a. Thus, we have F,(a)=1by the same argu-
ment as before. Conversely, if F,(e)=1, then we
have F,(e®)={1}, since Fp is a B-ternary logical
function. Thus, we obtain

Fola*)={0,1} & Fyla)=1/2

Then, by Definition 15, we see that Fpisa P-type
logical function. (Q.E.D.)

The P-type logical function Fp which is V2~
equivalent to a given B-ternary logical function
is represented by an expression that is obtained
by an expansion of F known as the prime-impli-
cant expansion in binary logic.

Example 2. Let

F=z,-~z; ~z,\f 2, ~1I,

*Ty\ ~ -~y T,

Then the P-type logical function Fp which is Vo-
equivalent to ¥ is given by

-

Fp=z,~z,\ ~x;01,

5. Extensions of B-Ternary Logical Functions

The concept of B-ternary logical functions can
be extended to many-valued logical functions in
two different directions. In one of these two
types of extensions, we simply use Egs. (1), (2)
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and (3) to define the operations AND(-), OR(v),
and NOT(~) for many-valued logic. Namely, the
definitions and laws stated in Sect. 2 can be
carried over to any set A such that if z¢4 | then
l-z¢A. They do not have to be defined only for
the set Vo consisting of 0 and 1. For example,
we may take, as the set A, the set of m truth
values which are given by

1

1
m=—1

(=0, 1, -, m—1)

where m = 4. We may also take the set of rational
numbers X such thato<z<lor the set of real num-
bers x such thato <z<1. Then such logics are
essentially the same as propositional logic with
continuum hypothesis, propositional logic with an
arbitrary cardinality of the truth value set [13]
whose study began a long time ago, and as fuzzy
logic [15] which is a rather recent subject of
study.

In the other type of extension of B-ternary
logical function to many-valued logical functions,
the extension is so made that the crucial proper-
ties of a B-ternary logical function (properties
(1) and (2) of Theorem 1) will be retained. Such
an extension yields a kind of many-valued fail-
safe logic {14]. We briefly describe it in the
following.

Consider the m truth values aj,---,am, and
letVa=iz, - exl. We also consider truth values
a;, -, &, each corresponding to the state where it

is not known which holds, 2, -, or 22 . We denote
by V the union of the set of these truth values for
ambiguous states and the set Vi. Then, V con-
sists of 2M-1 elements. We then define the par-
tial ordering > on V as follows:

Definition 17. - {in - &4} >, -, j»), then we
write

iymik P Rjrmil

We extend the partial ordering > to the set VI
as follows:
Definition 18. Leta=(e, -

» Eady B=(8y, ooy BR) €V,

If
a; > 5;

for all i, then we write

a>j

We can now define an m-valued fail-safe logi-
cal function as follows:

Definition 19. A (2M-1)-valued logical function
F is called an m-valued fail-safe logical function*
if F satisfies the following two conditions:

*Takaoka defined a many-valued fail-safe logi-
cal function in [12]. However, his definition is
slightly different from the definition given in the
present paper.




) IfasV,.", then F(a)eVa
(2) Ifa>3, then Fa)> FO

According to this definition of 2 many-valued
fail-safe logical function, a B-ternarv logical
function can be regarded as a binary fail-safe
logical function which is a restriction of a many-
valued logical function to the set of the two truth
values. From the standpoint of propositional
logic with the continuum hypothesis, a B-ternary
logical function can also be regarded as a propo-
sitional logical function with the continuum
hypothesis restricted to the set 0, 1/2. 1} of truth
values.

The B-ternary logic is an intersection of the
fuzzy logic and the many-valued fail-safe logic.
Corollaries 1 through 4 can readily be extended
to many-valued logic, and tye canonical form
defined in Sect. 3 can be applied to propositional
logic with continuum hypothesis or fuzzy logic.
There have been no canonical forms for a fuzzy
logical function whose expression contains the
operation NOT({~) {15], and the canonical form of
a B-ternary logical function defined in Sect. 3
can be used as a general canonical form of a
fuzzy logical function whether or not the expres-
sion of a fuzzy logical function contains the opera-
tion NOT (~).

6. Conclusion

The B-ternary logic and B-ternary logical
functions are fundamental subjects. However,
they have not been studied as much as they should
have been. It is believed that some of their im-
portant properties are clarified in the present
paper. They can be usefully applied in fail-safe
logic, hazard or fail detection, theory of asyn~
chronous sequential networks, and in many other
areas. These applications will be discussed on
another occasion.

In the present paper, B-ternary logic is dis-
cussed using the three operations AND, OR and
NOT. However, similar discussion can be given
using only the operation NAND which is extended
to the ternary case or only the operation NOR
which is also extended to the ternary case. The
canounical form of a B-ternary logical function is
formulated in the present paper using additive
forms. This can also be formulated in terms of
multiplicative forms by a treatment dual to that
in the present paper.

The present paper is a refinement of the paper
[16] submitted at an earlier time to the Technical
Group on the Theory of Automata, I.E.C.E.,
Japan. We thank numerous members of the
technical group for invaluable discussions. We
also thank Prof. Mochinori Goto of Meiji Univer-
sity, Mr. Yasuo Komamiya, Head of the Elec-
tronic Devices Division of the Electrotechnical
Laboratory, and Mr. Masashi Nagata, Chief of
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for their continued encouragement. We also thank
Mr. Jotaki, Head of the ETL Automatic Control
Division, and Mr. Sato, Chief of the Systems and
Control Group, for facilitating this research.

Finally, we wish to express our gratitude to
the Ministry of Education for their support of this
research from the Science Research Fund, Spe-
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